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Abstract. Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features
as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the
success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard
to their optical implementations. In this context, this work makes use of an optical complex media and wave-
front shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these
machines. In particular, we present experimental evidences on the correlation between the effective dimension-
ality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs
under a new light and opening paths toward future technological implementations of similar principles.
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1 Introduction

Over the last decades, Artificial Neural Networks (ANNs)
were established as a powerful computing architecture
across numerous fields of science and technology [1, 2]. Part
of its success is linked to the scalability and versatility of the
neuromorphic architecture, which with the impending pla-
teau of Moore’s law is now pushing towards the develop-
ment of novel computing hardware, capable of bypassing
the limits of electronics miniaturization [3]. Indeed, as the
amount of different mathematical operations involved in
such algorithms is not vast, mainly involving matrix multi-
plications and non-linear activation functions, the develop-
ment of hardware accelerators for ANNs has become an
attractive topic of research [4].

In this context, optical-based implementations appear
particularly promising, offering non-trivial advantages
when compared with electronic devices. Indeed, with the
ability to handle information at the speed of light allied
to multiplexing capabilities, optical information processing
systems have the native potential for fast, massively paral-
lelizable, and energy-efficient approaches. Nonetheless, real-
izing conventional ANNs with optics requires establishing
precise neuron connections which can be quite hard to
achieve, often limited by fabrication procedures, materials

or device imperfections. This, in turn, makes the already
intensive training procedures largely ineffective.

For all these reasons, architectures that can bypass the
tuning of all the weights have been increasingly explored for
hardware development, from which we can highlight the
implementations using Reservoir Computing (RC) [5] and
Extreme Learning Machines (ELMs) [6]. In simple terms,
the underlying concept of both models is to use a fixed
reservoir to non-linearly project the input information onto
a high-dimensional hidden space. The training process then
occurs only between the hidden layer and the output layer,
which strongly reduces the computation complexity and
softens the requirements for hardware deployment.

In particular, optical ELMs have already been demon-
strated through the use of complex optical media [7] and
multimode fibers [8, 9], and in principle, many other optical
phenomena can also be used to achieve such architectures.
For instance, ELMs based on v(3) materials have been
demonstrated numerically [10, 11], and experimentally [9].
Still, most of the works remain largely empirical, lacking
a fundamental understanding of such machines. In this
work, we study and implement an optical ELM based on
strongly scattering media that is able to process information
encoded either in the spatial distribution of the amplitude
or the phase of a continuous wave optical beam. Introduc-
ing a simple model for the amplitude case, we study the
dimensionality of the hidden space experimentally, as a
function of different encoding schemes with linear and
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nonlinear intensity measurements. Benchmarking the de-
vice on standard ML regression and classification tasks,
our results demonstrate the important role played by non-
linearity in the deployment of effective optical extreme
learning machines.

2 Theoretical framework

In simplified terms, the inner workings of an ELM consist in
taking a NI -dimensional input X and feed it to an
untrained hidden or reservoir layer, recording its output.
Thus, for each X(i) of the dataset, we obtain a No-dimen-
sional vector Y(i) given by

Y ið Þ ¼
G1 w1X ið Þ� �

..

.

GNo wNoX
ið Þ� �

2

664

3

775; ð1Þ

where G describes the dynamics of the hidden layer and is
commonly referred to as the activation function, and wj a
vector of weights for each output channel j. The ELM
strategy is now to use this output and multiply it by an
output weight vector b ¼ b1; . . . ; bNo

� �T
at the hidden

layer to obtain a prediction for a given task as

P X ið Þ� � ¼
XNo

j¼1

bjY
ið Þ
j ¼ Y ið Þ � b: ð2Þ

Put in this way, it is straightforward to see that training an
ELM to perform a task is reduced to simply computing a
linear transformation performed by the output weight
vector b. One way to perform this while preventing the
overfitting of the model is to fit the vector b via Ridge
regression by minimizing a regularized loss function

min
b2RNo�NT

jHb�Tj jj2 þ k jbj jj2; ð3Þ

where j�j jj denotes the Frobenious norm, and k the regu-
larization parameter. To perform this minimization, we
take each element of input and associated target data of

a training dataset, say pairs XðiÞ;TðiÞ� �N

i¼1, to construct

the matrix H by stacking all the output states as rows,
i.e. Hij ¼ YðiÞ

j . Constructing the matrix T with the associ-
ated targets stacked in the same way, equation (3) has
then an analytical solution given by (for N > No)

b ¼ HTHþ kI
� ��1

HTT; ð4Þ

where I is the identity matrix.
In theory, and as it happens in neural network architec-

tures, the performance of an ELM is intrinsically connected
with the dimensionality of the hidden space and its activa-
tion function. Indeed, from the literature, it is mathemati-
cally shown that as long as (i) the weights are drawn
from a random distribution and (ii) the activation function
G is a nonlinear piecewise continuous function, the ELM
will feature universal approximation capabilities on a

hidden space of dimensions equal or below the dimensional-
ity of the training dataset [6]. Yet, we shall notice that
fulfilling these conditions does not warrant by itself the
deployment of a working algorithm that is able to generalize
well for the task, nor being robust to external noise. As in
most neural network architectures, the generalization per-
formance is typically task-specific and shall be discussed
for each case individually by taking into consideration the
nature of the activation functions.

3 Implementation of an optical ELM

Our optical implementation of an ELM is based on wave-
front shaping techniques and is schematically described in
Figure 1, establishing the connection with the ELM frame-
work. In short, we first make use of a Digital Micromirror
Device (DMD), capable of both amplitude and phase mod-
ulation enabled by Lee holography [12], as the optical enco-
der to create the input state. The light is then coupled to a
multimode fiber via a standard fiber collimator for our
working wavelength, which works as the reservoir where
the information is mixed. At the exit, the optical field is a
speckle pattern that is known to possess Gaussian circular
statistics [13] and guarantees the randomness required by
an ELM. This pattern is then measured on a high-speed
CMOS camera both in the linear and non-linear regime,
which constitutes our hidden layer. Upon correct synchro-
nization, the system can work within the kHz rate, limited
by the detection and digital processing steps.

In particular, when using amplitude encoding with two
distinct encoding regions, as depicted in Figure 1, we can
make use of the properties of the optical transmission
matrix M to express the output field at the camera image
plane as

Gi ¼
Z

dx�x lð Þ
�x l�1ð Þ

Z
dy�y mð Þ

�y m�1ð Þ

� F M Eref þ f1 X ið Þ� �
E1 þ f2 X ið Þ� �

E2

� ��� ��2
	 
 ð5Þ

detected in the macropixel i = (l, m) with
l 2 1; . . . ;Nxf g; m 2 1; . . . ;Ny

� �
and Nx � Ny = No.

Furthermore, the camera detection function F can be
either linear F(I) = I (no saturation, low exposure time)
or nonlinear FðI Þ ¼ I=ðI þ I satÞ (saturation, higher expo-
sure time), thus corresponding to distinct activation
functions.

4 Results and discussion

To understand the capabilities of our setup, we have tested
it in standard regression and classification tasks. In specific,
for the regression task we used a dataset of points randomly

sampled from the function f ðxÞ ¼ sinð2pxÞ
2px

. For the classifi-

cation task we used a dataset of points based on the curves
x1ðhÞ ¼ ð2hþ pÞ cosðhÞ, x2ðhÞ ¼ ð�2h� pÞ cosðhÞ, y1ðhÞ ¼
ð2hþ pÞ sinðhÞ and y2ðhÞ ¼ ð�2h� pÞ sinðhÞ, where a
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sample j from class i consists of a pair of points fxiðhjÞþ
N j ; yiðhjÞ þN jgj , where hj is sampled from a uniform dis-
tribution Uð0; 2pÞ and N j is added random noise from a
distribution Uð0; 1Þ. For both methods, we have used a
total of 300 samples and trained with 80% of the whole
dataset and tested the performance in the additional 20%.
For both procedures, in order to encode the information
in the optical domain, we have defined
AðqiÞ ¼

qi � qmin

qmax � qmin
, where qi is a generalized coordinate,

and qmax and qmin are the greatest and lowest coordinates
within the dataset, respectively. For the scope of this manu-
script we will only analyse the results for amplitude modu-
lation, obtained by aggregating groups of DMD pixels
resulting in various modulation levels.

In Figure 2 we present the results for the regression task.
First, it is straightforward to see that the saturation regime
increases the performance both for the training and test
datasets. This observation matches our empirical expecta-
tion and can be confirmed by making a connection with
the dimensionality of the hidden space. To achieve this,
we computed the rank of the output matrix H by making
use of the singular value spectrum. Still, we should take into
consideration the effect of experimental noise, which can
artificially increase the dimensionality of the hidden space.
Anchored on Weyls inequality [14], we did this by counting

the number of singular values of H above the highest
singular value of the noise matrix of the i-th experiment
Ni ¼ Hi � Hh i, where Hh i represents the average over
100 experiments.

As it can be seen in Table 1, the ELM performance
increases with the rank. This happens because while both
activation functions are nonlinear, the non-saturated regime
only provides a second-degree polynomial while the satura-
tion regime features a saturable response which can only
be approximated by a higher order polynomial, effectively
increasing the dimensionality of the hidden space.

Regarding the classification task, a benchmark result is
found in Figure 3, together with a summary in Table 2.
Again and as expected, the camera saturation results in
increasing the dimensionality of the hidden space, allowing
us to achieve higher accuracy. Also, it is interesting to see
that the methodology provides a good generalization perfor-
mance, separating the regions as intended.

Fig. 1. Illustration of the setup for the implementation of an optical ELM. The information encoding is performed on the DMD, from
where the optical signal follows to a multimode fiber producing a speckle pattern which is collected with a digital camera, constituting
the hidden reservoir layer. The weights are then calculated digitally to be applied at the hidden layer to get a prediction.

Fig. 2. Regression performance under amplitude modulation. In
addition to the results of the 80–20% holdout strategy, we also
represent a test for the robustness of the implementation by
testing for a dataset with 5% of additional white noise at the end
of the hidden layer.

Table 1. Summary of the results for the Regression task,
with the Rank and Mean Absolute Error (MAE) metric
obtained through a 5-fold cross validation procedure.

Saturation Rank (H) MAE (Train) MAE (Test)

Off 3 0.1 0.16
On 8 0.0009 0.02

Fig. 3. Results for single fold for the classification task under
amplitude modulation.
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Finally, to test the performance of the optical ELM in
more complex tasks such as processing and classifying
images, we tested the setup on the classification of hand-
written digits through the MNIST dataset (1797 images,
with the same 80–20% holdout strategy) [15]. Overall, we
obtained accuracies around 93%, with a confusion matrix
depicted in Figure 4.

5 Final remarks

In this work, we demonstrated the implementation of an
optical extreme learning machine that is able to process
information encoded in the wavefront of an optical beam
by making use of a multimode fiber and a camera detector.
Using both standard regression and classification tasks, we
have shown that the setup is capable of achieving good
computing performances. Furthermore, by studying the
dimensionality of the hidden space and comparing it
against performance and generalisation capability, we have
demonstrated a correlation between the two which aligns
with the theoretical predictions. In particular, an increase
of the performance can be obtained by including physical
nonlinearities within the system, which is done using the
saturation of the detection system. Put into perspective,
the findings enclosed confirm the optical ELMs as a

promising platform for versatile non-Von Neumman analog
computing, while simultaneously paving the way for a
better understanding of such devices.
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